论文部分内容阅读
手掌静脉纹识别技术作为新一代高精度的生物特征识别技术,被广泛用于个人身份鉴定领域.然而,其识别效果受限于图像的质量,低质量的图像往往造成识别准确度偏低,如何有效的对图像质量进行评价从而筛选出高质量的图像成为掌静脉识别技术中的一项重要研究内容.本文旨在解决这一问题,提出了一种基于BP-AdaBoost神经网络的多参数的掌静脉图像质量评价法.根据掌静脉图像质量特点,提出多个参数的评价指标(对比度(contrast)、信息熵(entropy)、清晰度(sharpness)和等效视数(enl)).利用BP网