论文部分内容阅读
在按照"测试-选择"方法设计多分类器系统时,从超量生成的候选分类器集中选取一个最优子集是关键环节之一。基于此,定义一个组合适宜度概念,提出一种新的分类器选择方法。将该方法用于高光谱遥感数据分类实验中,并从具有27个候选的分类器集中挑选子集。实验结果表明,该方法在选择效率和识别精度方面具有优势,能保证所选子集的泛化能力。