论文部分内容阅读
为降低滚动轴承在线监测和故障诊断过程中振动信号采集、传输、存储和处理负担,基于压缩感知理论和小波包分析技术,提出一种基于压缩感知和小波信息熵的滚动轴承特征提取方法,用于滚动轴承故障诊断.应用部分哈达玛(PartHad-amard)矩阵采集振动信号实现压缩,通过小波包分解提取滚动轴承状态特征,计算其小波信息熵作为故障诊断特征.在标准数据集上进行振动信号特征提取,并采用4种分类方法完成故障诊断实验.结果表明:所提出的特征提取方法能够在较高的数据压缩率条件下,保持较高的故障诊断精度,适用于滚动轴承在线监测和故障诊断.