论文部分内容阅读
目的 3D点云与以规则的密集网格表示的图像不同,不仅不规则且无序,而且由于输入输出大小和顺序差异,具有密度不均匀以及形状和缩放比例存在差异的特性。为此,提出一种对3D点云进行卷积的方法,将关系形状卷积神经网络(relation-shape convolution neural network,RSCNN)与逆密度函数相结合,并在卷积网络中增添反卷积层,实现了点云更精确的分类分割效果。方法在关系形状卷积神经网络中,将卷积核视为由权重函数和逆密度函数组成的3D点局部坐标的非线性函数。对给定的点,权重函数