离散的非线性爆炸方程的密度守恒解

来源 :应用数学 | 被引量 : 0次 | 上传用户:lsssyd
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
离散的非线性爆炸方程是刻划粒子增长动力学的数学模型,这一模型反映了一类粒子反应系统中各种粒子密度随时间变化的规律,它是由可数无限多个彼此相互关联的非线性常微分方程所组成的自治系统.本文研究了这一无限维系统的密度守恒解的存在性.
其他文献
对于图G内的任意两点u和v,u-v测地线是指u和v之间的最短路.I(u,v)表示位于u-v测地线上所有点的集合,对于.S∈V(G),I(S)表示所有I(u,v)的并,这里“u,v∈.S.G的测地数g(G)是使I(S)=V(G)的点集.S的最小基
本文详细讨论了长方矩阵常见广义逆的代数扰动理论,并给出了他们代数扰动的表达式,改进了文献[3],[4]的相应结论。