论文部分内容阅读
在教育教学的过程中,如何诊断学生的知识水平是一个重要的问题.传统方法大多由教师根据学生的表现和成绩进行人工判断,存在效率低、主观性强的问题,且难以做到针对大量学生的个性化诊断.近年来,认知诊断模型中的DINA模型被广泛应用于诊断学生个性化知识掌握程度.然而传统DINA模型大多基于小样本数据,当面对在线教育带来的大规模数据处理需求时,存在收敛速度慢的问题,难以实际应用.针对DINA模型计算时间过长的问题,本文首先给出了DINA模型的收敛性证明,并提出了三种能够加速DINA求解的算法:(1)增量算法,它将学生