论文部分内容阅读
通过分析基于关联规则的文本分类,发现在保持分类规则对正例样本正确分类的同时减少对反例样本的错误分类可以提高分类的精确度.基于否定选择算法的思想提出了分类规则修正策略,用反例样本集合对分类规则进行耐受,从分类规则错误判别的反例样本中再产生规则,与原来的规则组成新规则,称为增强关联规则.基于修正策略产生的增强关联规则可以大幅度地减少对反例样本的错误分类,从而提高分类的精确度.通过形式化证明和实验,分类规则修正策略的有效性得到验证.