论文部分内容阅读
在神经网络中引入粗糙集理论和模糊聚类方法,实现建模预测。首先用粗糙集和模糊聚类进行属性约简,去掉冗余的属性。然后根据模糊逻辑规则获取合理的网络输入层、隐含层和输出层,建立优化的粗神经网络预测模型。该模型可以有效地去除神经网络中输入层的冗余神经元,合理地确定隐含层神经元的数目,使神经网络提高收敛性能,获得更好的非线性逼近能力。仿真实验结果说明:优化的粗神经网络预测模型,可提取有用信息,简化网络结构,减少训练时间,提高预测精度。在地质样品元素的预测实验中,取得了良好的效果。