论文部分内容阅读
工业互联网安全是制造强国和网络强国建设的基石,深度学习因其具有表达能力强、适应性好、可移植性高等优点而可支持"智能自主式"工业互联网安全体系与方法构建,因此促进深度学习与工业互联网安全的融合创新具有鲜明价值。本文从产业宏观、安全技术、深度学习系统等角度全面分析了发展需求,从设备层、控制层、网络层、应用层、数据层的角度剖析了深度学习应用于工业互联网安全的发展现状;阐述了工业互联网深度学习应用在模型训练、模型预测方面的安全挑战,前瞻研判了未来研究的重点方向,如深度神经网络可解释性、样本收集