论文部分内容阅读
提出一种特征保留的点云数据自适应精简算法。该算法首先构造散乱点云数据的局部拓扑信息,通过一种改进的二次栅格法快速建立K邻域,由此估算点的邻域弯曲度,再进行分类。算法在保留特征点后对其余点应用自适应精简距离进行阈值精简,故算法不仅可以完整保存实物模型整体轮廓,而且能够最大限度地保证模型区域特征。数值实验结果表明,该算法能够得到不错的精简效果,且具有较小的计算时间复杂度。