论文部分内容阅读
针对传统特征选择算法局限于单标签数据问题,提出一种多标签数据特征选择算法——多标签ReliefF算法。该算法依据多标签数据类别的共现性,假设样本各类标签的贡献值是相等的,结合三种贡献值计算方法,改进特征权值更新公式,最终获得有效的分类特征。分类实验结果表明,在特征维数相同的情况下,多标签ReliefF算法的分类正确率明显高于传统特征选择算法。