论文部分内容阅读
针对稀疏重构中正交匹配追踪(OMP)算法解相干问题,利用接收数据构造目标矩阵奇异值分解(SVD)后的大特征值对应的特征矢量,提出了两种改进解相干算法(NSO算法和MNSO算法).首先根据稀疏重构的框架下的阵列DOA估计模型,理论上分析了经典OMP算法、NSO算法和MNSO算法的运算量和重构精度,然后给出了算法性能的仿真结果.仿真结果表明,相对于经典OMP算法,两种改进算法的运算速度更快,稀疏重构效果更优.理论分析和仿真结果验证了两种改进算法的良好性能.