论文部分内容阅读
通过比较采用联邦卡尔曼滤波的状态向量融合和量测信息融合,得出量测信息融合优于状态向量融合,因为只有当卡尔曼滤波一致时状态向量融合才有效.采用基于最小均方差估计的观测值加权融合法融合了多传感器数据,保持了观测向量的维数.这种方法具有高效性.为了提高该算法的速度和精度,对系统的量测空间进行了等价变换,而等价系统的状态空间却没有改变.给出了等价变换前后的系统误差方差阵和状态估计均一致性的证明.把矩阵分析中的L-D分解算法运用到该算法中以避免计算矩阵的逆,从而改善了算法的稳定性和精度.举例验证了所设计算法的这些优