论文部分内容阅读
序列模式挖掘是从给定序列中发现出现频率高的模式的一种方法,目前已在诸多领域被广泛应用.假定子模式Pi和Pj(i〈j)可以分别匹配事件A和事件B,传统的序列模式挖掘方法能够对事件B在事件A之后的序列进行检测,而不能对事件B发生在事件A之前的序列进行识别.为了解决此问题,文中提出了周期性一般间隙约束的序列模式挖掘问题,该问题具有如下5个特点:间隙约束的最小值可为负值的一般间隙约束;每个间隙约束都相同的周期性模式;在支持数统计方面无特殊约束,即允许序列中事件多次使用;该挖掘问题满足Apriori性质;挖掘支持率