论文部分内容阅读
与自然真彩色图像相比,高光谱图像维数高、有标记的数据少。针对传统的分类方法主要利用光谱特征忽略了空间信息的提取的问题,本文提出了一种基于空-谱信息融合的主动学习与标签传递算法相结合的分类框架。基于概率模型的BT(Breaking Ties,BT)策略筛选出具有代表性的未标记样本,作为新的训练样本扩充训练样本集。标签传递算法推测未标记样本真正的类别信息,由分类器进行重新训练。实验表明:在有标签样本不充足的情况下,Indian Pines数据集分类精度达到76.89%,帕维亚大学数据集分类精度为95.2