论文部分内容阅读
在用磷掺杂a-Si∶H时,我们发现随掺杂量的增加,a-Si(P)∶H的直流暗电导σ_D先是增大,在 P/Si=10~(-3)时达最大值,为 10~(-2)(Ω-cm)~(-1)左右.继续的掺杂反而使σ_D下降.相应地,激活能 E_a先是减小,在P/Si(?)10~(-3)时呈最小,约 0.2eV,然后复而增大,如图1所示.这与单晶硅不一样的现象——磷在轻掺杂时有明显的掺杂作用而在“重掺杂”时失却掺杂作用——引起我们探讨非晶硅掺杂机制的兴趣. 为此,用辉光放电法在高纯单晶硅片上制备一系列掺杂程度不一的a-Si 样品,测红外吸收谱,看其随掺杂程度的变动.在此须提及,虽同是辉光放电法,但我们没有用Dundee大学的pH_3为掺杂剂的方法.我们建立一种新的掺杂方法,即利用升华或汽化
When a-Si: H is doped with phosphorus, we find that with the increase of doping amount, the direct current dark conductivity σ_D of a-Si (P): H first increases, and when P / Si = 10 ~ (-3) The maximum value is about 10 ~ (-2) (Ω-cm) ~ (-1) .During the doping, the σ_D decreases, and the activation energy Ea decreases first. ~ (-3) is the smallest, about 0.2eV, and then complex increases, as shown in Figure 1. This is not the same phenomenon with monocrystalline silicon - phosphorus in the light doping obvious doping role in “Dopant” loss of doping effect - led us to explore the amorphous silicon doping mechanism of interest.Therefore, glow discharge method in the preparation of a series of high-purity single crystal silicon doping levels vary a -Si samples were measured by infrared absorption spectroscopy to see the variation with the degree of doping. It should be mentioned here that although it is a glow discharge method, we do not use Dundee University pH_3 as a dopant method. We set up a New doping method, that is, the use of sublimation or vaporization