论文部分内容阅读
针对高维复杂优化问题,提出一种改进适应度函数和动态调整惯性权重的粒子群优化算法。首先考虑了搜索点的函数值及其变化率,并将该信息加入适应度函数。利用维惯性权重矩阵自适应动态调整惯性权重,较好地平衡了算法的全局探索和局部开发,并分析了惯性权重随种群多样性的变化关系。在算法后期计算每一维的收敛度,以一定的概率对收敛度最小的维进行变异,以加快算法的收敛速度。对高维测试函数的实验表明,算法提高了全局搜索能力。