论文部分内容阅读
提出了运用SVM机器学习方法进行故障过程趋势预测的方法,并设计了一个实用的SVM回归算法对“Tennessee Eastman”工厂的实际数据进行仿真研究。结果表明,用SVM方法进行故障过程趋势预测,具有较强的抗噪能力,在样本量有限情况下,采用e-不敏感损失函数得到的回归结果具有较高的实用价值。通过大量实验,给出了e取值不同对估计结果的影响的一个具体实验结果,分析了e取值对支持向量数目的控制作用。