论文部分内容阅读
神经网络方法成功地应用于修正密度泛函理论B3LYP方法中的三个参数(a0、ax和ac)以构建新B3LYP交换相关泛函.本文采用包含输入层、隐藏层和输出层的三层式神经网络结构.总电子数、多重度、偶极矩、动能、四极矩和零点能被选为物理描述符.296个能量数据被随机地分成两组,246个能量数据作为训练集以确定神经网络的最优结构和最优突触权重,50个能量数据作为测试集以测试神经网络的预测能力.修正后的三个参数觔0、觔x、觔c从输出层处得到,并用于计算体系的热化学性质如原子化能(AE)、电离势(IP)、质子亲合能(