论文部分内容阅读
标准近似支持向量机(PSVM)没有考虑非平衡分布数据的分类问题,为此,在PSVM的基础上,将优化问题中的惩罚因子由数值变更为一个对角阵,提出了一种改进的PSVM算法。该方法利用引入的对角阵对正负样本分别分配不同的惩罚因子,由于其任意性,使得该算法可以解决由多种因素引起的分布不平衡的分类问题,稳健性较好。利用实值免疫克隆算法实现了模型参数的自动选择,进一步提高了算法的泛化性能。实验结果表明新算法对于处理分布不平衡数据的分类问题相当有效。