融合密集残差块和GAN变体的医学图像非刚性配准

来源 :中国图象图形学报 | 被引量 : 0次 | 上传用户:tim6888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的现有的医学图像配准算法在处理较大非刚性形变的医学图像时,存在配准精度低和泛化能力不足的问题。针对该问题,提出结合密集残差块和生成对抗网络(generative adversarial network, GAN)的图像配准方法,用于多模态医学图像的非刚性配准。方法将密集残差块引入到生成器,提取待配准图像对的更多高层特征,从而提高配准精度;在GAN中采用最小二乘损失代替逻辑回归构造的交叉熵损失,由于最小二乘损失的收敛条件更严格,同时能缓解梯度消失和过拟合,从而提高配准模型的稳定性;在判别器网络中引入
其他文献
残差神经网络(residual neural network,ResNet)及其优化是深度学习研究的热点之一,在医学图像领域应用广泛,在肿瘤、心脑血管和神经系统疾病等重大疾病的临床诊断、分期、转移、治疗决策和靶区勾画方面取得良好效果。本文对残差神经网络的学习优化进行了总结:阐述了残差神经网络学习算法优化,从激活函数、损失函数、参数优化算法、学习衰减率、归一化和正则化技术等6方面进行总结,其中激活函
目的从医学影像中进行肝脏与肿瘤分割是计算机辅助诊断和治疗的重要前提。常见的胸部和腹部扫描成像效果中,图像对比度偏低,边界模糊,需要医生丰富的临床解剖学知识才能准确地分割,所以精确的自动分割是一个极大的挑战。本文结合深度学习与医学影像组学,提出一种肝脏肿瘤CT(computed tomography)分割方法。方法首先建立一个级联的2D图像端到端分割模型对肝脏和肿瘤同时进行分割,分割模型采用U-Ne
目的去除颅骨是脑部磁共振图像处理和分析中的重要环节。由于脑部组织结构复杂以及采集设备噪声的影响导致现有方法不能准确分割出脑部区域,为此提出一种深度迭代融合的卷积神经网络模型实现颅骨的准确去除。方法本文DIFNet(deep iteration fusion net)模型的主体结构由编码器和解码器组成,中间的跳跃连接方式由多个上采样迭代融合构成。其中编码器由残差卷积组成,以便浅层语义信息更容易流入深
目的深度学习在各种语义分割任务中取得了优异的性能,但需要大量带有准确标注的训练样本。乳腺超声由于其成像特点,导致图像对比度和分辨率低、斑点噪声较高、组织间边界模糊等,这些问题导致精确标注十分困难。超声分割数据集中存在较多非准确的标注,这些数据即标注噪声。若训练集中包含一定量的噪声,将会极大地影响网络的分割准确度。为了解决该问题,提出了一种针对超声图像的动态噪声指数及分割算法,实现在乳腺超声数据包含