论文部分内容阅读
为了提高能见度预报的准确率,尤其是低能见度预报的准确率,提出一种基于集成学习随机森林和LightGBM的能见度预测模型。首先,以数值模式系统的气象预报数据为基础,结合地面气象观测数据、PM2.5浓度观测数据,利用随机森林算法构建特征向量;其次,针对不同时间跨度的缺失数据,设计了3种缺失值处理方法对缺失值进行替代,生成用于训练和测试的连续性较好的数据样本集;最后,建立基于LightGBM的能见度预测模型,并用网络搜索法对其进行参数优化。把所提模型与支持向量机(SVM)、多元线性回归(MLR)、人工神经