论文部分内容阅读
糖厂澄清工段过程包含复杂的物理和化学反应,具有非线性、大滞后和不确定性的特点,难以建立精确的机理模型。常规神经网络建模是静态映射,实际应用中,权值的调节不能充分利用工业生产现场的动态数据信息,效果不理想。为此,提出了含有递归环节的T-S模糊神经网络(TSRFNN)结构,采用混沌BP学习算法引入非线性自反馈项获得复杂系统的动力学特征,通过与常规T-S模糊神经网络(TSFNN)在糖厂澄清工段过程的建模与仿真试验中进行比较,结果表明,在处理这类时变复杂系统建模方面TSRFNN表现出更加优越的性能,获得了非线性系统的全局最优模型。