论文部分内容阅读
经典的置信传播(BP)算法能够通过有限次数的迭代,推断出所有节点的边缘概率分布和最大似然概率。针对该算法在迭代过程中产生的影响精度和收敛速度的强烈震荡,找出了造成震荡的三个主要因素:强势能、紧密的环路和矛盾的方向,并有针对性地改进了该算法的核心更新规则;同时又进一步提出了异步消息传递方式,克服传统置信传播算法采用的同步消息传播方式的收敛慢、效率低等缺点。利用随机块模型拟合网络的生成过程,利用经典的期望最大化算法对模型进行求解,分别利用改进前后的置信传播算法推断隐变量的后验概率。在五个真实网络上的实验表明,