论文部分内容阅读
标签成为信息组织的重要方式之一,随着推荐系统的蓬勃发展,标签推荐成为学者们研究的重要问题之一.目前存在各种各样的标签系统,其功能千差万别,标签数据信息越来越复杂.目前研究往往针对特定类型标签数据.缺乏既综合考虑标签数据中不同类型对象的复杂信息又能适用于多种标签系统数据的标签推荐模型.构建了标签推荐模型HnMTR,该模型首先针对标签数据中不同类型对象构建异构网络模型,其次对异构网络模型中不同类型顶点进行同空间映射,使不同类型的顶点和边可在同一空间进行量化比较;最后基于同空间映射后网络,引入多参数马尔可夫模型