论文部分内容阅读
针对在规模庞大的数据中不能快速准确地选择用户和产品的特征以及不能准确预测用户行为偏好的问题,提出一种CUR矩阵分解方法。该方法是从原始矩阵中选取少量列构成C矩阵,选取少量行构成R矩阵,然后利用正交三角分解(QR)构造U矩阵。分解后的C矩阵和R矩阵分别是用户和产品的特征矩阵,并且C和R矩阵是由真实的数据构成的,因此能够分析出具体的用户和产品特征;为了能够比较准确地预测用户的行为偏好,改进了CUR算法,使其在矩阵恢复方面有更高的稳定性和准确性。最后在真实的数据集(Netflix数据集)上的实验表明,与传