论文部分内容阅读
卷积算子是卷积神经网络的核心构造块,它根据一定的感受视野,融合卷积神经网络各层与不同通道之间的信息,提取出原始图像特征。然而图像中的相邻像素往往具有相似的值,导致卷积层的输出包含大量冗余信息。为了减少冗余信息,加快模型推理速度,神经网络中会加入池化层进行信息降维。对比传统降维方法,池化本身具有平移和旋转不变性,对图像特征的降维效果更好,并能维持模型是端到端的。利用这样的特性,本文提出一种基于注意力机制的降维方法。在特征提取过程中非线性地复用神经网络各层降维后的特征信息,使网络能学习到它们之间的潜在联