论文部分内容阅读
针对锅炉汽包系统的强耦合性和非线性及传统的PID控制方法存在控制精度低、调节时间长等问题,提出了利用基于数据的建模方法,对汽包系统进行误差反向传播(BP)神经网络建模,并对神经网络模型进行泛化能力测试,然后利用基于BP神经网络的PID控制方法设计汽包液位优化控制器。实验仿真结果表明,基于BP神经网络建立的汽包模型具有较好的泛化能力,神经网络PID优化控制器在控制精度高、收敛速度快和鲁棒性强等方面都优于传统PID控制器。