基于OTSU多阈值分割算法的激光线扫点云数据表达及精简方法研究

来源 :光学技术 | 被引量 : 0次 | 上传用户:philipsyin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
激光线扫方式获取的点云数据量庞大,不利于点云数据的存储、处理与分析。为了对激光线扫点云数据进行有效精简,提出了一种基于OTSU多阈值分割算法的激光线扫点云数据表达及精简方法。基于点云数据坐标与图像灰度值的映射,采用OTSU多阈值分割算法进行区域分割,并将分割后的各区域进行边缘提取及细化处理。根据原映射关系将细化的二值图像重新以点云方式表示,即得到精简的点云数据。在保持原有点云数据关键信息完整度的基础上,可有效地精简点云数据。实验结果表明:基于OTSU多阈值分割算法可有效地精简点云数据,同时能够有效地去除扫描过程中的背景干扰数据,具有较大的适用性和实际应用参考价值。 The amount of point cloud acquired by the laser line sweep method is huge, which is not conducive to the storage, processing and analysis of point cloud data. In order to effectively streamline the laser line data, a new method based on OTSU multi-thresholding algorithm for laser line data extraction and streamlining is proposed. Based on the mapping of point cloud data coordinates and image gray value, the OTSU multi-thresholding algorithm is used to segment the regions, and the segmented regions are extracted and refined. According to the original mapping relationship, the refined binary image is represented as a point cloud, that is, the refined point cloud data is obtained. On the basis of maintaining the integrity of the key information of the original point cloud data, the point cloud data can be effectively streamlined. The experimental results show that the OTSU multi-threshold segmentation algorithm can effectively reduce the point cloud data, and can effectively remove the background interference data during scanning, which is of great applicability and practical reference value.
其他文献