论文部分内容阅读
现有雷达欺骗干扰识别研究中,存在难以获取带标签样本的问题,为此,提出一种基于多模态小样本学习的雷达欺骗干扰识别算法.首先,对雷达接收信号进行“语音”和“视觉”模态的定义;然后用伪孪生网络将信号的2种模态进行匹配训练;最后,将测试集的信号样本与匹配集进行匹配识别,得到最终的雷达欺骗干扰信号识别率.仿真实验表明,训练样本数量降低到原始样本集的25%,干噪比为3 dB时,本文算法的欺骗干扰信号识别率仍能达到90% 以上.