论文部分内容阅读
服装关键点的检测对服饰分类、推荐和检索效果具有重要的作用,然而实际服装数据库中存在大量形变及背景复杂的服饰图片,导致现有服装分类模型的识别率和服装推荐、检索的效果较差.为此,本文提出了一种级联层叠金字塔网络模型CSPN (Cascaded Stacked Pyramid Network),将目标检测方法与回归方法相结合,首先采用Faster R-CNN结构对服装目标区域进行识别,然后基于ResNet-101结构生成的多层级特征图,构建级联金字塔网络,融合服饰图像的多尺度高低层信息,解决图片形变及复杂