一种基于MDARNet的低照度图像增强方法

来源 :软件学报 | 被引量 : 0次 | 上传用户:guisq2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于低照度环境下所采集的图像存在亮度低、对比度差、出现噪声和色彩失衡等低质问题,严重影响其在图像处理应用中的性能.为了提升低照度图像质量,以获得具有完整结构和细节且自然清晰的图像,结合Retinex理论与卷积神经网络,提出了一种基于MDARNet的低照度图像增强方法,并引入Attention机制模块和密集卷积模块以提升性能.首先,MDARNet利用同时包含二维和一维的3个不同尺度卷积核对图像进行初步特征提取,并用像素注意模块对多尺度特征图进行针对性学习;其次,设计跳跃连接结构对图像进行特征提取,使图像特征被最大限度地利用;最后,用通道注意模块和像素注意模块同时对提取到的特征图进行权重学习和照度估计.实验结果表明:MDARNet能够有效提升低照度图像的亮度、对比度、色彩等;且相较于一些经典算法,该方法在视觉效果及客观评价指标(PSNR,SSIM,MS-SSIM,MSE)能够得到更好的效果.
其他文献
随着滴滴、Uber等出租车服务的日益普及,用户的乘车需求预测逐渐成为智慧城市、智慧交通的重要组成部分.准确的预测模型既可以满足用户的出行需求,也可以降低道路车辆空载率,有效地避免资源浪费,并缓解交通压力.车辆服务商可以收集到大量GPS数据及用户需求数据,然而,如何合理运用数据进行需求预测,是关键且实用的问题.提出一种结合城市POI的可变形卷积时空网络(DCSN)模型来预测区域乘车需求,模型包括两部分——可变形卷积时空模型与POI需求关联模型:前者即通过DCN与LSTM建模未来需求与时空之间的相关性,后者则
数据采样是快速提取大规模数据集中有用信息的重要手段,为更好地应对越来越大规模的数据高效处理要求,借助近邻传播算法的优异性能,通过引入分层增量处理和样本点动态赋权策略,实现了一种能够非常有效地平衡处理效率和采样质量的新方法.其中的分层增量处理策略考虑将原始的大规模数据集进行分批处理后再综合;而样本点动态赋权则考虑在近邻传播过程中对样本点进行合理的动态赋权,以获得采样的数据空间上更好的全局一致性.实验中,分别使用人工数据集、UCI标准数据集和图像数据集进行性能分析,结果表明:新方法与现有相关方法在采样划分质量
随着大数据、机器学习等技术的发展,网络流量与任务的计算量也随之快速增长.研究人员提出了内容分发网络(CDN)、边缘计算等平台技术,但CDN只能解决数据存储,而边缘计算存在着难以管理和不能跨集群进行资源调度等问题.容器化技术广泛应用在边缘计算场景中,但目前,边缘计算采取的容器编排策略普遍比较低效,导致任务的计算延迟仍然过长.提出了功能分发网络FDN(function delivery network),一方面为用户提供了访问边缘计算资源的统一接口和容器化的计算平台,无需进行繁琐的计算资源配置;另一方面,FD