基于改进SVM的智能电网调控系统实时风险评估与预警技术

来源 :沈阳工业大学学报 | 被引量 : 0次 | 上传用户:mc_2000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对智能电网调控系统通信和数据安全难以保障的问题,提出了一种基于改进支持向量机(SVM)的智能电网调控系统实时风险评估与预警技术.采用卷积神经网络(CNN)改进SVM模型得到CNN-SVM分类模型,用以处理实时风险评估体系中的数据信息.通过将CNN输出的数据特征输入SVM分类器进行风险等级分类,完成对数据中可能出现的风险进行识别、评估定级及预警.仿真结果表明,所提技术能够对调控系统实时风险进行准确、可靠的评估与预警,且其分类准确率、召回率、F1分数的均值分别为92%、86%和90%,均优于对比方法并具有更优的可靠性.
其他文献