基于FCM优化神经网络的办公楼空调负荷预测

来源 :建筑科学 | 被引量 : 0次 | 上传用户:sky_fly2005
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
空调负荷预测对于优化空调系统运行具有重要指导价值,本文针对传统神经网络在预测空调负荷时精度较低、泛化能力弱和物理意义不明晰的缺点,建立了模糊C均值算法(Fuzzy C-means)优化的BP神经网络复合模型.模型先采用FCM算法对输入参数进行聚类,针对不同类建立BP神经网络预测模型,将待测样本分类后进行预测,最后使用决策树算法筛选预测结果中聚类不佳的部分进行加权优化.以珠海某办公楼空调系统实际运行数据为例验证了模型,结果显示随机负荷样本预测的精度指标即标准差率(Coefficient of Variance)为0.191相较于不聚类神经网络提高了51.4%;典型工作日、休息日日均负荷样本预测标准差率为0.08和0.14相对于不聚类神经网络则分别提高了73.0%和39.7%.
其他文献
目的 :通过对高原地区糖尿病合并甲状腺功能异常患者的临床特点及治疗进行分析,探讨该疾病的功能呢个异常类型及治疗经验,寻找对该类病症的诊断及治疗方法 ,提高临床诊治率.