论文部分内容阅读
讨论了掺氮磷化镓(GaP∶N)荧光光谱的峰值强度(孤立氮等电子中心束缚激子发光峰A、 最邻近N-N对束缚激子发光峰NN1和次邻近N-N对束缚激子发光峰NN3)随激发强度的变化规律, 并在发光跃迁动力学方程中计入了由于高激发密度引起的样品温度升高, 而导致孤立氮A的能级NA和最邻近N-N对NN1的能级的热激发的增强, 得到了R(即最近邻N-N对(NN1)束缚激子发光峰与孤立N等电子中心束缚激子发光峰的强度比INN1/IA)与掺N浓度和激发光强的变化关系。 利用实验数据进行拟合, 得到了更好的拟合结果, 并讨论了用此法计算GaP∶N样品中氮浓度时应注意的一些问题。
The peak intensities (isolated isoelectronic central bound exciton emission peak A, nearest neighbor N-N to the bound exciton luminescence peak NN1 and the next to N-N pair binding) of the fluorescence spectra of GaP: N doped with gallium nitride Exciton luminescence peak NN3) with the excitation intensity changes, and included in the luminescence transition kinetic equation due to high excitation density caused by the sample temperature, which led to isolated nitrogen A level NA and the nearest N-N The enhancement of the thermal excitation of the level of NN1 gives the relationship between the intensity ratio (R INN1 / IA) of R (ie the intensity ratio of the nearest neighbor N-N pair (NN1) bound exciton luminescence peak to the isolated N isoelectronic central bound exciton luminescence peak) N concentration and excitation light intensity changes. Fitting with the experimental data obtained better fitting results, and discussed some of the problems that should be noticed when using this method to calculate the nitrogen concentration in GaP: N samples.