论文部分内容阅读
依据RBF神经元模型的几何解释,提出一种新的构造型神经网络分类算法.首先从样本数据本身入手,通过引入一个密度估计函数来对样本数据进行聚类分析;然后在特征空间里构造超球面,以逼近样本点分布的几何轮廓,从而将神经网络训练问题转化为点集'包含'问题.该算法有效克服了传统神经网络训练时间长、学习复杂的缺陷,同时也考虑了神经网络规模的优化问题.实验证明了该算法的有效性.