论文部分内容阅读
用KAM迭代方法研究了下列二阶微分方程:( Фp (x′))′ + F(x, x′, t) + ω^PФp (x′) +α│x│^l +e(x, t) =0,其中,Фp(S) = │S│^p-2s, p 〉 1, α〉 0,ω 〉 0为正常数,l满足 - 1 〈ω 〈p + 2.当Y(x,x′,f)与e(x,f)的导数满足一定条件时,利用可逆映射的小扭转定理得到拟周期解的存在性与所有解的有界性.