基于蚁群算法的三峡升船机船厢设备巡视点检路线规划

来源 :计算机系统应用 | 被引量 : 0次 | 上传用户:fencer_2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对三峡升船机船厢结构复杂,设备巡视路线难以选择的问题,以升船机船厢巡视路线为研究对象,将设备巡视点检路线规划转换为TSP旅行商问题.通过巡视路线无向加权图及点位空间坐标,建立升船机设备巡视点检点位空间结构模型.结合蚁群算法在Matlab软件中分别计算出白班及中班的最佳巡视路线.实验结果表明,基于蚁群算法计算的最佳巡视路线符合三峡升船机设备巡视要求.
其他文献
一种基于节点负载的数据动态分区系统,主要考虑节点CPU、内存、带宽负载情况,首先采用二次平滑法预测节点的负载,再结合AHP和熵值指标权重法得到每个节点的处理能力,最后针对不同应用场景动态地调整系统的负载均衡性,提高应用的响应速度;该系统主要包括负载监测采集、预测、数据预分区、数据迁移等模块.由于分布式环境存在节点资源的异构性,为了数据分析计算过程中减少节点之间数据的传输,充分利用节点计算资源,通过负载均衡性提高应用分析的并行计算速度.为此,本文提出一种基于节点负载的数据动态分区机制和策略来改善系统负载均衡
自然场景乌金体藏文文本信息作为高度浓缩的高层语义信息,不仅具有较大的研究和实用价值,而且可以用于协助藏文场景文本理解领域的研究.目前针对自然场景下乌金体藏文的检测与识别的相关研究甚少,本文在人工收集的自然场景乌金体藏文图像数据集的基础上,对比了目前常见的文字检测算法在自然场景乌金体藏文上的检测性能以及在不同特征提取网络下基于序列的文字识别算法CRNN在自然场景乌金体藏文图像数据集上的识别准确率并分析了在314张真实自然场景下乌金体藏文识别出错的特殊例子.实验表明本文在文字检测阶段采用的可微分的二值化网络D