论文部分内容阅读
针对遥感图像的特点,本文提出了一种基于K-均值与改进的多相位水平集模型结合的新方法。相比于传统的水平集模型,改进模型在能量函数中考虑了图像的面积、梯度信息和边缘检测。图像的梯度信息可以克服分割中存在的边缘定位的不准确,边缘检测可以在曲线衍化过程中更好的保持边缘信息。为了加快边缘的收敛速度,避免陷入局部最优,本文提出先对图像进行中值滤波来平滑图像和消除部分噪声,然后利用K均值进行聚类得到明显的特征差异。接着用Sobel算子进行梯度重建,然后用改进的多相位水平集模型进行分割。实验结果显示本文的算法对于遥