论文部分内容阅读
提出了一种基于改进SOLOv2的服装图像分割算法,以解决因小目标以及遮挡引起的服装图像分割准确率低的问题.以SOLOv2为基础模型,优化掩膜特征分支中对多层特征的融合方式,从深至浅逐层融合特征信息;上采样过程中选用M ish激活函数,在提高模型泛化能力与收敛速度的同时,强化模型对图像中小目标服装特征的提取能力;引入影响因子优化损失函数,根据遮挡程度自适应调整损失函数的权重,减少遮挡问题对服装图像分割带来的影响.实验结果表明:与原SOLOv2模型相比,提出的方法平均预测精度值提高了3.2%.改进后的分割算法能显著提升对遮挡、小目标服装图像的分割准确度.