论文部分内容阅读
该文对基于高斯基函数小脑模型(CMAC)的快速算法进行了改进,针对其学习速率的选取问题,提出了一种基于遗传算法的学习速率最优选取方法,使得CMAC学习速率的选取得到了最优化.讨论了该算法的实际可行性,提出了参数选择和实时控制相分离的策略,并在某转台伺服系统模型中进行了应用研究.仿真结果表明,改进算法避免了学习速率选取的经验不确定性,提高了CMAC学习收敛的快速性.