论文部分内容阅读
网络社交平台中大量谣言的广泛传播严重影响社会稳定。传统谣言检测方法无法有效处理文本中多义词和突出重要关键词,造成检测效果不理想。针对该问题,提出一种基于BERT模型的增强混合神经网络的谣言检测方法。该方法使用BERT模型将推文向量化,通过3种不同尺寸的卷积核学习推文特征,将这些特征进行最大池化拼接得到特征序列,并输入到BiLSTM中学习序列特征。同时引入Attention机制计算注意力分值,实现谣言检测。在公开数据集Twitter15和Twitter16上的实验结果表明,该方法相较于其他方法在谣言检