论文部分内容阅读
尽管用对数定义的Shannon熵是测度信息不确定性的有效方法,但存在无定义值和零值的问题,且现有的二维Shannon交叉熵法其运行速度仍有提升空间。为此,提出了一维和二维指数交叉熵阈值分割算法。首先给出了指数交叉熵的定义,并导出了一维指数交叉熵阈值选取方法;然后将其推广提出了基于分解的二维指数交叉熵阈值分割算法。通过分别求原像素灰度级图像和邻域平均灰度级图像的一维指数交叉熵最佳阈值,并将其组合求解二维指数交叉熵最佳阈值,从而将二维运算转换到两个一维空间上,大大缩小了搜索空间,使计算复杂度由O(L~4