基于Doc2Vec与SVM的聊天内容过滤

来源 :计算机系统应用 | 被引量 : 0次 | 上传用户:shanon0577
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
直播系统中用户聊天内容的实时拦截具有非常重大的意义,为了提高分类的准确率和效率,提出了一种基于Doc2Vec与SVM结合的文本分类模型对聊天内容分类,判断聊天内容是否应该被拦截.首先使用Doc2Vec模型将聊天内容表示成密集数值向量的形式,第二部分使用SVM分类器进行分类.通过实验表明,该模型有效地减少了文本表示的维度,提高了训练效率,而且具有的97%的准确率和89.82%召回率,性能优于朴素贝叶斯和基于Doc2Vec的Logistic模型.
其他文献
多租户作为云计算的核心计算,它解决了在相同的系统资源或软件应用中实现多用户共同访问和使用,提高了系统软硬件资源的利用率,如何保障租户服务质量的前提下提高服务器资源
0-1背包问题是一个经典的NP完全问题,该问题在实际生活中具有广泛的应用.针对现有算法在求解0-1背包问题时精度不高的缺点,提出了一种诱导因子猴群算法.所给诱导因子猴群算法