论文部分内容阅读
机器人在执行同时定位与地图创建(simultaneous localization and mapping, SLAM)的复杂任务时,容易受到移动物体的干扰,导致定位精度下降、地图可读性较差、系统鲁棒性不足,为此提出一种基于深度学习和边缘检测的SLAM算法。首先,利用YOLOv4目标检测算法获取场景中的语义信息,得到初步的语义动静态区域,同时提取ORB特征点并计算光流场,筛选动态特征点,通过语义关联进一步得到动态物体,利用canny算子计算动态物体的轮廓边缘,利用动态物体以外的静态特征点进行相机位姿