论文部分内容阅读
一般来说,入侵检测系统(IDS)识别入侵者时,所使用的相互独立的特征越多,则提供的分类信息也越多,也越有利于提高IDS的正确识别率,但另一方面,IDS是借用一些数学方法来完成的,它要求用于分类的特征越少越好。为了解决这个矛盾,提高IDS的实时性和整体性能,给出了一种特征降维算法,即,通过数学变换,把原来n个特征的信息尽量集中到较少的k(k〈n)个新特征中去,然后用这个新特征识别入侵者。这些较少的新特征作为IDS的输入,可以提高IDS的整体性能。以此为基础建立了一个基于反向传播神经元网络的IDS。实验证明用