论文部分内容阅读
近年来,随着深度学习的迅猛发展,人脸检测算法准确度已有很大提升。模型越复杂,检测速度越慢,设计一种准确度与速度兼顾的人脸检测模型尤为必要。基于FaceBoxes人脸检测算法框架,提出一种基于深层卷积主干网络的改进方法,并在人脸检测基准数据集中进行测试实验。其在FDDB数据集上的实验结果显示,检测正确率达95%,比传统方法提高1.67%。该算法在保证实时性的同时提升了检测准确率,可应用于追求更高准确率的人脸检测系统。