【摘 要】
:
针对在回归测试中原有测试数据集往往难以满足新版本软件测试需求的问题,提出一种基于自适应粒子群算法(APSO)的测试数据扩增方法。首先,根据原有测试数据在新版本程序上的穿越
论文部分内容阅读
针对在回归测试中原有测试数据集往往难以满足新版本软件测试需求的问题,提出一种基于自适应粒子群算法(APSO)的测试数据扩增方法。首先,根据原有测试数据在新版本程序上的穿越路径与目标路径的相似度,在原有的测试数据集中选择合适的测试数据,作为初始种群的进化个体;然后,利用初始测试数据的穿越路径与目标路径的不同子路径,确定造成两者路径偏离的输入分量;最后,根据路径相似度构建适应度函数,利用APSO操作输入分量,生成新的测试数据。该方法针对四个基准程序与基于遗传算法(GA)和随机法的测试数据扩增方法相比,测试数据
其他文献
活动轮廓模型广泛应用于图像分割和目标轮廓提取,基于边缘的测地活动轮廓(GAC)模型在提取边缘明显的物体时得到广泛的应用,但GAC演化过程中,迭代次数较多,耗时较长。针对这一问题,结合贝塞尔滤波理论,对GAC模型改进。首先,利用贝塞尔滤波对图像进行平滑处理,降低噪声;其次,基于贝塞尔滤波的边缘检测函数,构建新的边缘停止项,且并入到GAC模型中;最后,在构造的模型中同时加入反应扩散(RD)项以避免水平
抚顺双菱新型建材有限公司隶属抚顺石化公司石化二厂,为解决石化公司自备电厂粉煤灰排放污染问题,响应国家有关部门大力发展高掺量粉煤灰烧结多孔砖的号召,投资2700余万元于2000
针对脑部图像中存在噪声和强度失真时,基于结构信息的方法不能同时准确提取图像强度信息和边缘、纹理特征,并且连续优化计算复杂度相对较高的问题,根据图像的结构信息,提出了基于改进Zernike距的局部描述符(IZMLD)和图割(GC)离散优化的非刚性多模态脑部图像配准方法。首先,将图像配准问题看成是马尔可夫随机场(MRF)的离散标签问题,并且构造能量函数,两个能量项分别由位移矢量场的像素相似性和平滑性组
目前,我国经济发展以及社会发展都面临复杂的影响因素,在很大程度上不利于经济的健康发展,各个领域的企业也都面临着激烈的市场竞争。企业要想在市场竞争中占据有利地位,必须
在基于样例的图像修复算法中,由于优先权公式的计算容易受图像局部噪声和细小纹理的干扰,导致修复顺序错乱;而在搜索最优匹配块时,因忽略了图像块内部的结构影响,可能导致误匹配。针对以上问题提出了一种基于图像的结构-纹理分解及局部总变分最小化的图像修复模型。首先,根据对数总变分最小化模型,将待修复图像进行结构-纹理分解,得到图像的结构分量,并利用图像的结构分量来计算待修复点优先权,使优先权的计算排除局部纹