论文部分内容阅读
图像识别与匹配是增强现实领域研究与应用的基础和关键,针对户外场景的广域性和随机性,以及目标纹理结构相似性等问题,提出一种基于SURF与地理格网模型的增强现实方法。该方法根据目标场景与地理位置的相关性,检测图像特征点并生成Location-SURF图像特征描述,基于地理格网模型构建空间四叉树索引,建成静态特征样本库。将视频帧、位置和角度信息生成特征图像,上传至服务端解析运算并与样本库训练匹配。选取宁波环球航运广场约0.376km~2的区域,采集270余幅图像数据构建样本库并开展试验,通过现场图像的实时