论文部分内容阅读
基于已有的视觉空间和文本空间上标签相关性建模方法,提出一种多模态子空间学习的语义标签生成方法。通过建立视觉特征相似图,以非线性方式重构"图像-标签"相关性,进而将图像的视觉模态表示和标签的文本模态表示统一到多模态子空间中,并保证空间变换前后具备结构保持。在该空间中,标签的文本模态与图像的视觉内容模态信息彼此互补,语义相关的图像和标签映射到空间中相近的样本点,进而将语义标签生成问题转换为子空间内图像的近邻标签搜索问题。结果表明,该方法在FLICKR-25K数据集上,性能达到36.88%,在NUS-WI